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Abstract
By using the generalized Abel–Plana formula, we derive a summation formula
for the series over the zeros of a combination of the associated Legendre
functions with respect to the degree. The summation formula for the series
over the zeros of the combination of the Bessel functions, previously discussed
in the literature, is obtained as a limiting case. As an application we evaluate
the Wightman function for a scalar field with a general curvature coupling
parameter in the region between concentric spherical shells on a background of
constant negative curvature space. For the Dirichlet boundary conditions the
corresponding mode-sum contains the series over the zeros of the combination
of the associated Legendre functions. The application of the summation
formula allows us to present the Wightman function in the form of the sum
of two integrals. The first one corresponds to the Wightman function for
the geometry of a single spherical shell and the second one is induced by
the presence of the second shell. The boundary-induced part in the vacuum
expectation value of the field squared is investigated. For points away from the
boundaries the corresponding renormalization procedure is reduced to that for
the boundary-free part.

PACS numbers: 02.30.Gp, 03.70.+k, 04.62.+v

1. Introduction

The associated Legendre functions are an important class of special functions that appear in a
wide range of problems of mathematical physics. The physical importance of these functions is
related to the fact that they appear as solutions of the field theory equations in various situations.
In particular, the radial parts of the solutions for the scalar, fermionic and electromagnetic
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wave equations on background of constant curvature spacetimes are expressed in terms of the
associated Legendre functions (see, for instance, [1–3]). The eigenfunctions in braneworld
models with de Sitter and anti-de Sitter branes are also expressed in terms of these functions
(see [4]). Motivated by this, in [5], by making use of the generalized Abel–Plana formula,
we have derived a summation formula for the series over the zeros of the associated Legendre
function of the first kind with respect to the degree (for the generalized Abel–Plana formula
and its applications to physical problems see [6–8]). This type of series is contained in the
mode-sum for two-point functions of a quantum scalar field in the background of a constant
curvature space with spherical boundary, on which the field obeys the Dirichlet boundary
condition. The application of the summation formula allowed us to extract from the vacuum
expectation values the part corresponding to the situation without boundary and to present the
boundary-induced part in terms of rapidly convergent integral.

In the corresponding problem with two concentric spherical boundaries, in the region
between two spheres the radial part of the eigenfunctions is expressed in terms of a combination
of the associated Legendre functions of the first and second kinds. The eigenfrequencies are
determined by the location of the zeros of this combination with respect to the degree. In the
present paper, by specifying the functions in the generalized Abel–Plana formula, we obtain
a summation formula for the series over these zeros. As in the case of the other Abel–Plana-
type formulas, previously considered in the literature, this formula presents the sum of the
series over the zeros of the combination of the associated Legendre function in the form of
the sum of two integrals. In boundary-value problems with two boundaries the first integral
corresponds to the situation when one of the boundaries is absent and the second one presents
the part induced by the second boundary. For a large class of functions the latter is rapidly
convergent and, in particular, is useful for the numerical evaluations of the corresponding
physical characteristics.

The paper is organized as follows. In section 2, by specifying the functions in the
generalized Abel–Plana formula we derive a formula for the summation of the series over
zeros of the combination of the associated Legendre functions with respect to the degree. In
section 3, special cases of this summation formula are considered. First, as a partial check
we show that as a special case the standard Abel–Plana formula is obtained. Then we show
that from the summation formula discussed in section 2, as a limiting case the formula is
obtained for the summation of the series over the zeros of the combinations of the Bessel
functions, previously derived in [6]. A physical application is given in section 4, where the
positive frequency Wightman function for a scalar field is evaluated in the region between two
spherical boundaries on the background of a negative constant curvature space. It is assumed
that the field obeys the Dirichlet boundary condition on the spherical shells. The use of the
summation formula from section 2 allows us to extract from the vacuum expectation value the
part corresponding to the geometry where the outer sphere is absent. The part induced by the
latter is presented in terms of an integral, which is rapidly convergent in the coincidence limit
for points away from the sphere. The main results of the paper are summarized in section 5. In
the appendix the formula for the normalization integral is derived and we show that the zeros
of the combination of the associated Legendre functions with respect to the degree are simple.

2. Summation formula

Let z = zk , k = 1, 2, . . . , be zeros of the function

Xμ
iz(u, v) = P

μ

iz−1/2(u)P
−μ

iz−1/2(v) − P
−μ

iz−1/2(u)P
μ

iz−1/2(v)

sin(μπ)
, (1)
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in the right half-plane of the complex variable z;

Xμ
izk

(u, v) = 0. (2)

In (1), P
μ

iz−1/2(u) is the associated Legendre function of the first kind (in this paper the
definition of the associated Legendre functions follows that given in [9]). In the discussion
below we will assume that u, v > 1. The expression in the numerator of (1) has simple zeros
for integer values of μ and the function X

μ
iz(u, v) is regular at these points. Since one has

the property X−μ
ν (u, v) = Xμ

ν (u, v), without loss of generality, we consider the parameter μ

being non-negative, μ � 0. For given values u, v, and μ the function X
μ

iz(u, v) has an infinity
of real zeros. From the asymptotic formula for the associated Legendre functions, we can see
that for z → +∞ one has

Xμ
iz(u, v) ≈ 2 sin[(ηv − ηu) z]

πz
√

sinh ηu sinh ηv

, (3)

where ηu and ηv are defined as

u = cosh ηu, v = cosh ηv. (4)

From here we obtain the asymptotic expression for large zeros:

zk ≈ πk/ (ηv − ηu) . (5)

In general, the zeros zk are functions of the parameters u, v, and μ: zk = zk(u, v, μ). By
taking into account that for the associated Legendre function one has P

μ

−ν−1/2(u) = P
μ

ν−1/2(u),
we see that X

μ
−ν(u, v) = Xμ

ν (u, v). Hence, the points z = −zk are zeros of the function
X

μ
iz(u, v) as well. In the appendix we show that the zeros z = zk are simple and under the

conditions specified above the function X
μ
iz(u, v) has no zeros which are not real. We will

assume that zk are arranged in ascending order of magnitude. Note that the function Xμ
ν (u, v)

can also be expressed in terms of the combination

Yμ
ν (u, v) = Q

μ

ν−1/2(u)P
μ

ν−1/2(v) − P
μ

ν−1/2(u)Q
μ

ν−1/2(v), (6)

as

Xμ
ν (u, v) = 2

πeiμπ

�(ν − μ + 1/2)

�(ν + μ + 1/2)
Yμ

ν (u, v), (7)

where Q
μ

ν−1/2(u) is the associated Legendre function of the second kind and �(x) is the gamma
function.

A summation formula for the series over zk can be derived by using the generalized
Abel–Plana formula [6] (see also [7, 8]). For functions f (z) and g(z) meromorphic in the
strip a � x � b of the complex plane z = x + iy this formula has the form

lim
b→∞

[
p.v.

∫ b

a

dx f (x) − π i
∑

k

Res
z=zg,k

g(z) − π i
∑

k,Im zf,k �=0

σ(zf,k) Res
z= zf,k

f (z)

]

= 1

2

∫ a+i∞

a−i∞
dz [g(z) + σ(z)f (z)] , (8)

where σ(z) ≡ sgn(Im z) and p.v. means the principal value of the integral. In this formula,
zf,k and zg,k are the positions of the poles of the functions f (z) and g(z) in the strip a < x < b.
As functions f (z) and g(z) in formula (8) we choose

f (z) = h(z)

4Q
μ

iz−1/2(u)Q
μ

−iz−1/2(u)

� (iz + μ + 1/2) π2e2iμπ i sinh(zπ)

� (iz − μ + 1/2) cos[(iz − μ)π ]
,

(9)

g(z) =
[

Q
μ

−iz−1/2(v)

Q
μ

−iz−1/2(u)
+

Q
μ

iz−1/2(v)

Q
μ

iz−1/2(u)

]
h(z)

2X
μ
iz(u, v)

,

3
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where h(z) is a meromorphic function for a � Re z � b. The combinations appearing on the
left-hand side of formula (8) are presented in the form

g(z) ± f (z) = Q
μ

∓iz−1/2(v)

Q
μ

∓iz−1/2(u)

h(z)

X
μ
iz(u, v)

. (10)

Note that the function g(z) has simple poles at the zeros zk of the function (1). With the help of
the asymptotic formulas for the associated Legendre functions, we can see that the conditions
for the generalized Abel–Plana formula (8) are satisfied if the function h(z) is restricted by
the constraint

|h(z)| < x−2με(x) ec(ηv−ηu)y, z = x + iy, |z| → ∞, (11)

uniformly in any finite interval of x, where c < 2, ε(x) → 0 for x → +∞.
Now, after the substitution of the functions (9) into formula (8), we see that for a function

h(z) meromorphic in the half-plane Re z � a and satisfying condition (11), the following
formula is obtained:

lim
b→∞

{
n∑

k=m

h(z)

∂zX
μ
iz(u, v)

Q
μ

iz−1/2(v)

Q
μ

iz−1/2(u)

∣∣∣∣
z=zk

+
i

π
p.v.

∫ b

a

dx f (x) + r[h(z)]

}

= i

2π

∫ a+i∞

a−i∞
dz

Q
μ

−σ(z)iz−1/2(v)

Q
μ

−σ(z)iz−1/2(u)

h(z)

X
μ
iz(u, v)

, (12)

where the function f (z) is defined by relation (9). In this formula we have introduced the
notation

r[h(z)] =
∑

k,Im zh,k �=0

Res
z=zh,k

[
Q

μ

−σ(zk)iz−1/2(v)

Q
μ

−σ(zk)iz−1/2(u)

h(z)

X
μ
iz(u, v)

]

+
1

2

∑
k,Im zh,k=0

Res
z=zh,k

[
h(z)

X
μ
iz(u, v)

∑
l=±

Q
μ

liz−1/2(v)

Q
μ

liz−1/2(u)

]
, (13)

with zh,k being the positions of the poles for the function h(z). On the left-hand side of (12),
one has zm−1 < a < zm, zn < b < zn+1 and in (13) the summation goes over the poles zh,k in
the strip a < Re z < b. Note that one has the relations

Q
μ

iz−1/2(v)

Q
μ

iz−1/2(u)
= P

μ

iz−1/2(v)

P
μ

iz−1/2(u)
= P

−μ

iz−1/2(v)

P
−μ

iz−1/2(u)
, z = zk, (14)

and in the summation of the first term in figure braces of (12) we can replace the ratio of the
associated Legendre functions of the second kind by the ratio of the functions of the first kind.

A useful form of the summation formula (12) is obtained in the limit a → 0. In this
limit, we see that for a function h(z) meromorphic in the half-plane Re z � 0 and satisfying
the condition (11) the following formula holds:

∞∑
k=1

h(z)

∂zX
μ
iz(u, v)

Q
μ

iz−1/2(v)

Q
μ

iz−1/2(u)

∣∣∣∣
z=zk

= πe2iμπ

4
p.v.

∫ ∞

0
dx

� (ix + μ + 1/2) sinh(xπ)

� (ix − μ + 1/2) cos[(ix − μ)π ]

× h(x)

Q
μ

ix−1/2(u)Q
μ

−ix−1/2(u)
− r[h(z)]

− 1

2π

∫ ∞

0
dx

Q
μ

x−1/2(v)

Q
μ

x−1/2(u)

h(x eπ i/2) + h(x e−π i/2)

X
μ
x (u, v)

. (15)

4
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By using the asymptotic formulas for the associated Legendre functions and the relation (7),
for the corresponding asymptotic behavior of the function X

μ
x (u, v) for large values x 	 1,

one finds

Xμ
x (u, v) ≈ e(ηv−ηu)x

πx
√

sinh ηu sinh ηv

. (16)

From this asymptotic formula it follows that, under condition (11) for the function h(z), the
second integral on the right-hand side of formula (15) exponentially converges in the upper
limit.

If the function h(z) has poles on the positive real axis, it is assumed that the first integral
on the right-hand side converges in the sense of the principal value. From the derivation of
(15) it follows that this formula may be extended to the case of some functions h(z) having
branch points on the imaginary axis, for example, having the form h(z) = h1(z)/(z

2 + c2)1/2,
where h1(z) is a meromorphic function. This type of function appears in the physical example
discussed in section 4. Special cases of formula (15) are considered in the next section.

Another generalization of formula (15) can be given for a class of functions h(z) having
purely imaginary poles at the points z = ± iyk , yk > 0, k = 1, 2, . . . , and at the origin
z = y0 = 0. We assume that the function h(z) satisfies the condition

h(z) = −h(ze−π i) + o((z − σk)
−1), z → σk, σk = 0, iyk. (17)

In the way similar to that used in [5], it can be seen that formula (15) is extended for this class
of functions adding to the right-hand side the sum of residues

−
∑

σk=0,iyk

(1 − δ0σk
/2)Res

z=σk

[
Q

μ

−iz−1/2(v)

Q
μ

−iz−1/2(u)

h(z)

X
μ
iz(u, v)

]
, (18)

and taking the principal value of the second integral on the right-hand side of (15). The latter
exists due to condition (17).

3. Special cases

First we consider the case μ = 1/2. For the corresponding associated Legendre functions one
has

P
−1/2
z−1/2(cosh η) =

√
2

π

sinh(zη)

z
√

sinh η
, P

1/2
z−1/2(cosh η) =

√
2

π

cosh(zη)√
sinh η

. (19)

By making use of these formulas, we find

X1/2
iz (u, v) = 2

π

sin[z(ηv − ηu)]

z
√

sinh ηu sinh ηv

. (20)

Hence, in this case for the zeros zk one has zk = πk/(ηv − ηu). Introducing a new function
F(z) in accordance with the relation zh(z) = F(z(ηv − ηu)/π), from formula (15) we obtain
the Abel–Plana summation formula in its standard form.

Now let us show that from formula (15), as a special case, a summation formula is obtained
for the series over zeros of the combination of cylinder functions. First of all, by making use
of formulas

lim
s→+∞(sz)±μP

∓μ

isz−1/2(cosh(λ/s)) = J±μ(λz), (21)

with Jμ(η) being the Bessel function of the first kind, we can see that the following relation
holds:

lim
s→+∞ Xμ

isz(cosh(λu/s), cosh(λv/s)) = Cμ(λuz, λvz), (22)

5
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where

Cμ(λuz, λvz) = Jμ(λuz)Yμ(λvz) − Yμ(λuz)Jμ(λvz). (23)

Note that, instead of the function J−μ(z) we have introduced the Neumann function Yμ(z).
Hence, in the limit s → ∞ from (15) we obtain the summation formula for the series over
zeros z = λμ,k , k = 1, 2, . . . , of the function Cμ(λuz, λvz). For this, first we rewrite formula
(15) making the replacements z → sz, x → sx, in both sides of this formula including the
terms in r[h(z)], and we take u = cosh(λu/s), v = cosh(λv/s). Introducing a new function
F(z) = h(sz), in the limit s → +∞ we find the formula

∞∑
k=1

F(z)

∂zCμ(λuz, λvz)

Jμ(λvz)

Jμ(λuz)

∣∣∣∣
z=λμ,k

= 1

π
p.v.

∫ ∞

0
dx

F(x)

J 2
μ(λux) + Y 2

μ(λux)

−rC[F(z)] − 1

4

∫ ∞

0
dx

Kμ(λvx)

Kμ(λux)

F (xeπ i/2) + F(xe−π i/2)

Kμ(λux)Iμ(λvx) − Iμ(λux)Kμ(λvx)
,

(24)

where Iμ(x) and Kμ(x) are the modified Bessel functions and

rC[F(z)] = π
∑

k

Res
Im zF,k=0

[
Jμ(λuz)Jμ(λvz) + Yμ(λuz)Yμ(λvz)

J 2
μ(λux) + Y 2

μ(λux)

F (z)

Cμ(λuz, λvz)

]

+ π
∑
l=1,2

∑
k

Res
(−1)l Im zF,k<0

[
H(l)

μ (λvz)

H
(l)
μ (λuz)

F (z)

Cμ(λuz, λvz)

]
. (25)

In deriving (24) we have also used the formulas

lim
ν→+∞ ν−μQ

μ

iν−1/2(cosh(η/ν)) = −π i

2
eiμπH(2)

μ (η),

lim
ν→∞ ν±μP ∓μ

ν (cosh(x/ν)) = I±μ(x), (26)

lim
ν→∞ ν−μQμ

ν (cosh(x/ν)) = eiμπKμ(x),

and the relation

H(2)
μ (λvz)

H
(2)
μ (λuz)

= Jμ(λvz)

Jμ(λuz)
, z = λμ,k. (27)

Note that from (26) it follows that

lim
s→+∞ Xμ

sx(cosh(λu/s), cosh(λv/s)) = 2

π
[Kμ(λux)Iμ(λvx) − Iμ(λux)Kμ(λvx)]. (28)

Formula (24) is a special case of the result derived in [6] (see also [8]). Physical applications
of this formula are given in [10, 11].

4. Vacuum polarization by concentric spherical boundaries in a constant curvature
space

4.1. Wightman function

In this section we give a physical application of the summation formula (15). Consider a scalar
field ϕ(x) on the background of the space with constant negative curvature described by the
line element

ds2 = dt2 − a2[dr2 + sinh2 r(dθ2 + sin2 θ dφ2)], (29)

6
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where a is a constant. The field equation has the form

(∇l∇ l + M2 + ξR)ϕ(x) = 0, (30)

where M is the mass of the field quanta, ξ is the curvature coupling parameter and for the
Ricci scalar one has R = −6a−2. We will assume that the field operator satisfies the Dirichlet
boundary conditions on two concentric spherical shells with radii r = r1 and r = r2, r1 < r2,

ϕ(x)|r=r1,2 = 0. (31)

The boundary conditions modify the spectrum of the zero-point fluctuations and, as a
result of this modification, the physical properties of the vacuum are changed. Among the
most important characteristics of these properties are the expectation values of quantities
bilinear in the field operator such as the field squared and the energy–momentum tensor.
These expectation values are obtained from two-point functions in the coincidence limit of the
arguments. As a two-point function here we will consider the positive frequency Wightman
function. Other two-point functions are evaluated in a similar way. Expanding the field
operator over the complete set {ϕα(x), ϕ∗

α(x)} of classical solutions to the field equation
satisfying the boundary conditions (31), the Wightman function is presented in the form of the
following mode-sum:

W(x, x ′) = 〈0|ϕ(x)ϕ(x ′)|0〉 =
∑

α

ϕα(x)ϕ∗
α(x ′), (32)

where |0〉 is the amplitude of the vacuum state and α is a set of quantum numbers specifying
the solution.

In accordance with the spherical symmetry of the problem under consideration, the
eigenfunctions for the scalar field can be presented in the factorized form

ϕα(x) = Z(r)Ylm(θ, φ)e−iωt , (33)

where Ylm(θ, φ) are the spherical harmonics with l = 0, 1, 2, . . . , −l � m � l. The equation
for the radial function is obtained from the field equation (30) and has the form

1

sinh2 r

d

dr

(
sinh2 r

dZ

dr

)
+

[
(ω2 − M2)a2 + 6ξ − l(l + 1)

sinh2 r

]
Z = 0. (34)

In the region between the spherical shells the solution of equation (34) is expressed in terms
of the associated Legendre function as

Z(r) = c1P
−l−1/2
iz−1/2 (u) + c2P

l+1/2
iz−1/2(u)√

sinh r
,

with integration constants c1 and c2 and the notations

z2 = (ω2 − M2)a2 + 6ξ − 1, u = cosh r. (35)

From the boundary condition on the inner sphere we find

c2

c1
= −P

−l−1/2
iz−1/2 (u1)

P
l+1/2
iz−1/2(u1)

, ui ≡ cosh ri, i = 1, 2, (36)

and hence,

Z(r) = Cα

X
l+1/2
iz (u1, u)√

sinh r
, (37)

where Cα is the normalization constant and the function X
l+1/2
iz (u1, u) is defined by (1). From

the boundary condition on the outer sphere we see that the eigenvalues for z are solutions of
the equation

Xl+1/2
iz (u1, u2) = 0. (38)

7



J. Phys. A: Math. Theor. 42 (2009) 465210 A A Saharian

As a result, the eigenfunctions have the form

ϕα(x) = Cα√
sinh r

Xl+1/2
iz (u1, u)Ylm(θ, φ) e−iωt , (39)

and hence, z = zk , k = 1, 2, . . . , in the notations of section 2. The corresponding
eigenfrequencies are related to these zeros by the formula

ω2
k = ω2(zk) = (

z2
k + 1 − 6ξ

)/
a2 + M2. (40)

Hence, the set α of the quantum numbers is specified to α = (l,m, k).
The coefficient Cα in (39) is determined from the orthonormalization condition for the

eigenfunctions:∫
d3x

√
|g|ϕα(x)ϕ∗

α′(x) = δαα′

2ω
, (41)

where the integration goes over the region between the spherical shells. Making use of the
integration formula given in the appendix and the boundary conditions, for this coefficient we
find

C−2
α = a3 ω(z)

z

(
u2

2 − 1
)[

∂zX
l+1/2
iz (u1, u2)

]
∂uX

l+1/2
iz (u1, u), (42)

with z = zk , u = u2. By using the Wronskian relation for the associated Legendre functions,

W
{
P

μ

iν−1/2(u),Q
μ

iν−1/2(u)
} = eiμπ�(iν + μ + 1/2)

(1 − u2)�(iν − μ + 1/2)
, (43)

it can be seen that

[
∂uX

l+1/2
izk

(u1, u)
]
u=u2

= 2

π

1

u2
2 − 1

P
l+1/2
izk−1/2(u1)

P
l+1/2
izk−1/2(u2)

. (44)

Upon substituting this into (42), the normalization coefficient is written in the equivalent form

C−2
α = a3 2ω(z)

πz
∂zX

l+1/2
iz (u1, u2)

P
l+1/2
iz−1/2(u1)

P
l+1/2
iz−1/2(u2)

∣∣∣∣
z=zk

. (45)

Note that the ratio of the gamma functions in this formula can also be presented in the form

�(izk + l + 1)

�(izk − l)
= 1

π
cos[π(izk − l − 1/2)]|�(izk + l + 1)|2. (46)

Substituting the eigenfunctions into the mode-sum formula (32) and using the addition
theorem for the spherical harmonics, for the Wightman function one finds

W(x, x ′) = 1

8a3

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′

×
∞∑

k=1

z
X

l+1/2
iz (u1, u)X

l+1/2
iz (u1, u

′)

∂zX
l+1/2
iz (u1, u2)

P
l+1/2
iz−1/2(u2)

P
l+1/2
iz−1/2(u1)

e−iω(z)�t

ω(z)

∣∣∣∣
z=zk

, (47)

where �t = t − t ′ and u′ = cosh r ′. In (47), Pl(cos γ ) is the Legendre polynomial and

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′). (48)

As the expressions for the zeros zk are not explicitly known, formula (47) for the Wightman
function is not convenient. In addition, the terms in the sum are highly oscillatory for large
values of quantum numbers.
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For the further evaluation of the Wightman function we apply to the series over k the
summation formula (15) with u = u1 and v = u2, taking in this formula

h(z) = zXl+1/2
iz (u1, u)Xl+1/2

iz (u1, u
′)

e−iω(z)�t

ω(z)
, (49)

where the function ω(z) is defined by (40). The function ( 49) has no poles in the right half-
plane and, hence, r[h(z)] = 0. The corresponding conditions are satisfied if r+r ′+�t/a < 2r2.
In particular, this is the case in the coincidence limit t = t ′ for the region under consideration.
For the function (49) the part of the integral on the right-hand side of formula (15) over the
region (0, xM) vanishes, and for the Wightman function one finds

W(x, x ′) = W1(x, x ′) − 1

8πa2

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′

∫ ∞

xM

dx x

× Q
l+1/2
x−1/2(u2)

Q
l+1/2
x−1/2(u1)

X
l+1/2
x (u1, u)X

l+1/2
x (u1, u

′)

X
l+1/2
x (u1, u2)

cosh
(√

x2 − x2
M�t/a

)
√

x2 − x2
M

, (50)

where we have defined

xM =
√

M2a2 + 1 − 6ξ . (51)

In formula (50), the first term on the right-hand side is given by

W1(x, x ′) = − 1

32a3

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′

∫ ∞

0
dx x sinh(xπ)

× |�(ix + l + 1)|2 X
l+1/2
ix (u1, u)X

l+1/2
ix (u1, u

′)

Q
l+1/2
ix−1/2(u1)Q

l+1/2
−ix−1/2(u1)

e−iω(x)�t

ω(x)
. (52)

This function does not depend on the outer sphere radius whereas the second term in (50)
vanishes in the limit r2 → ∞. Hence, the two-point function given by (52) is the Wightman
function for a scalar field in background spacetime described by the line element (29) outside
a single sphere with radius r1 on which the field obeys the Dirichlet boundary condition. This
can also be seen by the direct evaluation using the corresponding eigenfunctions. Thus, we can
interpret the second term on the right-hand side of (50) as the part in the Wightman function
induced by the presence of the outer sphere.

An alternative form for the function (52) is obtained by making use of the identity

X
l+1/2
ix (u1, u)X

l+1/2
ix (u1, u

′)

Q
l+1/2
ix−1/2(u1)Q

l+1/2
−ix−1/2(u1)

= − 4

π2
P

−l−1/2
ix−1/2 (u)P

−l−1/2
ix−1/2 (u′)

− 4i

π3
P

−l−1/2
ix−1/2 (u1)

∑
σ=±1

Q
−l−1/2
σ ix−1/2(u)Q

−l−1/2
σ ix−1/2(u

′)

Q
−l−1/2
σ ix−1/2(u1)

. (53)

Substituting (53) into (52), we can see that the part with the first term on the right-hand side
of formula (53),

W0(x, x ′) = 1

8π2a3

∞∑
l=0

(2l + 1)Pl(cos γ )√
sinh r sinh r ′

∫ ∞

0
dx x sinh(πx)

× |�(ix + l + 1)|2P −l−1/2
ix−1/2 (cosh r)P

−l−1/2
ix−1/2 (cosh r ′)

e−iω(x)�t

ω(x)
, (54)

9
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is the Wightman function for a scalar field on background of the constant curvature space
without boundaries (see [5]). In the part with the second term on the right-hand side of
formula (53) we rotate the contour of integration over x by the angle π/2 for the term with
σ = −1 and by the angle −π/2 for the term with σ = 1. As a result, the exterior Wightman
function for a single spherical boundary is presented in the decomposed form

W1(x, x ′) = W0(x, x ′) − i

4π2a2

∞∑
l=0

(−1)l
(2l + 1)Pl(cos γ )√

sinh r sinh r ′

∫ ∞

xM

dx x
�(x + l + 1)

�(x − l)

× P
−l−1/2
x−1/2 (u1)

Q
−l−1/2
x−1/2 (u1)

Q
−l−1/2
x−1/2 (cosh r)Q

−l−1/2
x−1/2 (cosh r ′)

cosh
(√

x2 − x2
M�t/a

)
√

x2 − x2
M

,

(55)

where the second term on the right-hand side is induced by the spherical boundary. The
Wightman function for the region inside a single spherical shell is investigated in [5]. The
corresponding expression is obtained from (55) by the replacements P

−l−1/2
x−1/2 � Q

−l−1/2
x−1/2 in

the second term on the right of this formula.
Taking the limit a → ∞ with fixed ar = R, from the formulas given above we obtain

the corresponding results for spherical boundaries in the Minkowski spacetime with radii
R1 = ar1 and R2 = ar2. Note that in this limit one has xM = aM and the result does not
depend on the curvature coupling parameter. Introducing a new integration variable y = x/a

and using the asymptotic formula for the gamma function for large values of the argument,
from (50) we find

W(M)(x, x ′) = W
(M)
1 (x, x ′) −

∞∑
l=0

(2l + 1)Pl(cos γ )

4π2
√

RR′

∫ ∞

M

dy y
cosh(

√
y2 − M2�t)√
y2 − M2

× Kl+1/2(R2y)

Kl+1/2(R1y)

Gl+1/2(R1y,Ry)Gl+1/2(R1y,R′y)

Gl+1/2(R1y,R2y)
, (56)

where we have introduced the notation Gν(x, y) = Kν(x)Iν(y) − Kν(y)Iν(x). The first term
on the right-hand side of formula (56) is the Wightman function in the region outside a single
spherical boundary with radius R1 in the Minkowski bulk. This function is given by the
expression

W
(M)
1 (x, x ′) = W

(M)
0 (x, x ′) −

∞∑
l=0

(2l + 1)Pl(cos γ )

4π2
√

RR′

∫ ∞

M

dy y

× Kl+1/2(Ry)Kl+1/2(R
′y)

Il+1/2(R1y)

Kl+1/2(R1y)

cosh(
√

y2 − M2�t)√
y2 − M2

. (57)

Expressions (56) and (57) are special cases of the general formulas given in [10] for a scalar
field with Robin boundary conditions in arbitrary number of spatial dimensions.

4.2. Vacuum expectation value of the field squared

The vacuum expectation value of the field squared is obtained from the Wightman function
taking the coincidence limit of the arguments. This limit is divergent and some renormalization
procedure is necessary. Here the important point is that for points outside the spherical shells
the local geometry is the same as for the case of without boundaries and, hence, the structure
of the divergences is the same as well. This is also directly seen from formulas (50) and (55),

10
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where the second terms on the right-hand sides are finite in the coincidence limit. Since in these
formulas we have already explicitly subtracted the boundary-free part, the renormalization is
reduced to that for the geometry without boundaries. In this way for the renormalized vacuum
expectation value of the field squared one has

〈ϕ2〉ren = 〈ϕ2〉1,ren − 1

8πa2

∞∑
l=0

2l + 1

sinh r

∫ ∞

xM

dx

× x√
x2 − x2

M

Q
l+1/2
x−1/2(u2)

Q
l+1/2
x−1/2(u1)

[
X

l+1/2
x (u1, u)

]2

X
l+1/2
x (u1, u2)

, (58)

where the first term on the right-hand side is the corresponding quantity outside a spherical
boundary with radius r1 in the constant negative curvature space without boundaries and the
second one is induced by the presence of the second spherical shell with the radius r2. Note
that the latter vanishes on the interior sphere. For the first term one has

〈ϕ2〉1,ren = 〈ϕ2〉0,ren −
∞∑
l=0

ei(l+1/2)π

4π2a2

(2l + 1)

sinh r

∫ ∞

xM

dx x

× �(x + l + 1)

�(x − l)

P
−l−1/2
x−1/2 (u1)

Q
−l−1/2
x−1/2 (u1)

[
Q

−l−1/2
x−1/2 (u)

]2√
x2 − x2

M

, (59)

where 〈ϕ2〉0,ren is the vacuum expectation value for the field squared in the constant negative
curvature space without boundaries and the second one is induced by the presence of a
single spherical shell with radius r1. Note that the corresponding formula for the vacuum
expectation value inside a spherical shell (see [5]) is obtained from (59) by the replacements
P

−l−1/2
x−1/2 � Q

−l−1/2
x−1/2 in the second term on the right-hand side.

Let us discuss the behavior of the vacuum expectation value of the field squared in
the asymptotic regions of the parameters. First we consider the part corresponding to the
geometry of a single sphere with radius r1. In the exterior region this expectation value is
given by formula (59). For points far from the sphere, r 	 1, for the associated Legendre
function we have

Q
μ

x−1/2(cosh r) ≈ √
π eiμπ �(x + μ + 1/2)

�(x + 1)
e−(x+1/2)r , (60)

and the main contribution in the integral on the right-hand side of formula ( 59) comes from
the region near the lower limit. To the leading order one finds

〈ϕ2〉1,ren ≈ 〈ϕ2〉0,ren −
√

xM/r e−2r(1+xM)

4
√

πa2�(1 + xM)

∞∑
l=0

(2l + 1)

× �(xM + l + 1)�(xM − l)

ei(l+1/2)π

P
−l−1/2
xM−1/2(u1)

Q
−l−1/2
xM−1/2(u1)

, (61)

and the expectation value of the field squared is exponentially suppressed. In particular, for
a minimally coupled scalar field the suppression is stronger than in the case of the conformal
coupling. For large values l the terms of the series in (61) behave like 4l2xM +1 tanh2l+1(r1/2).
Note that the limit under consideration corresponds to large proper distances from the sphere
compared to the curvature radius of the background geometry. For the geometry of spherical
boundary in the Minkowski bulk the vacuum expectation value of the field squared at large
distances from the sphere decays exponentially for a massive field and as a power law for

11
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a massless field. In the limit r1 → 0 with fixed r we use the asymptotic formulas for the
associated Legendre functions for the arguments close to 1. The main contribution in (59)
comes from the term l = 0 and in the leading order we obtain

〈ϕ2〉1,ren ≈ 〈ϕ2〉0,ren − xMr1K1(2xMr)

4π2a2 sinh2 r
, r1 � 1. (62)

Now let us consider the behavior of the vacuum expectation value inside a single spherical
shell in the limit r1 → ∞ when r is fixed. Using the asymptotic formula (60) with r = r1 and
the corresponding formula

P
μ

x−1/2(cosh r1) ≈ π−1/2�(x)e(x−1/2)r1

�(x − μ + 1/2)
, (63)

for the associated Legendre function of the first kind, we can see that the main contribution to
the integral comes from the region near the lower limit. To the leading order we find

〈ϕ2〉1,ren ≈ 〈ϕ2〉0,ren − xM

√
xM/r1e−2xMr1

8
√

πa2 sinh r�2(1 + xM)

×
∞∑
l=0

(2l + 1)�2(xM + l + 1)
[
P

−l−1/2
xM−1/2(u)

]2
. (64)

For large values of l, the separate terms of the series behave as 2l2xM tanh2l+1(r/2). In the case
xM = 0 and for large values r1 we have

〈ϕ2〉1,ren ≈ 〈ϕ2〉0,ren − 1

16πa2r2
1

∞∑
l=0

(2l + 1)

sinh r

[
l!P −l−1/2

−1/2 (u)
]2

. (65)

In this case we have power law decay of the sphere-induced part as a function of the physical
radius of the sphere ar1.

The asymptotic behavior of the second term on the right-hand side of (58) is investigated
in the similar way. For large values r2 when r is fixed, this term is suppressed by the factor
e−2xMr2 for xM �= 0 and behaves as r−2

2 for xM = 0. By using the properties of the associated
Legendre functions, it may be checked that in the limit r1 → 0 for fixed values r the second
term on the right-hand side of (58) coincides with the vacuum expectation value induced by a
single spherical boundary with radius r2 in the interior region.

The physical example discussed in this section demonstrates the advantages for the
application of the Abel–Plana-type formulas in the evaluation of the expectation values
of local physical observables in the presence of boundaries. For the summation of the
corresponding mode-sums the explicit form of the eigenfrequencies is not necessary and the
part corresponding to the boundary-free space is explicitly extracted. Further, the boundary-
induced parts are presented in the form of integrals which rapidly converge and are finite in
the coincidence limit for points away from the boundaries. In this way the renormalization
procedure for local physical observables is reduced to that in quantum field theory without
boundaries. Methods for the evaluation of global characteristics of vacuum, such as the total
Casimir energy, in problems where the eigenmodes are given implicitly as zeros of a given
function, are described in [12].

5. Conclusion

The associated Legendre functions arise in many problems of mathematical physics. By
making use of the generalized Abel–Plana formula, we have derived summation formula (15)
for the series over the zeros of the combination (1) of the associated Legendre functions with

12
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respect to the degree. This formula is valid for functions h(z) meromorphic in the right
half-plane and obeying condition (11). The summation formula may be extended to a class
of functions having purely imaginary poles and satisfying the condition (17). For this, on the
right-hand side of (15) we have to add the sum of residues (18) and take the principal value of
the second integral on the right-hand side. Using formula (15), the difference between the sum
over the zeros of the combination of the associated Legendre functions and the corresponding
integral is presented in terms of an integral involving the Legendre-associated functions with
real values of the degree plus residue terms. For a large class of functions h(z) this integral
converges exponentially fast and, in particular, is useful for numerical calculations. The Abel–
Plana summation formula is obtained as a special case of formula (15) with μ = 1/2 and for
an analytic function h(z). Applying the summation formula for the series over the zeros of the
function X

μ
iz(cosh(λu/s), cosh(λv/s)) and taking the limit s → ∞ , we have obtained formula

(24) for the summation of the series over zeros of the combination of the Bessel functions.
The latter is a special case of the formula, previously derived in [6].

A physical application of the summation formula is given in section 4. For a quantum
scalar field with the general curvature parameter we have evaluated the positive frequency
Wightman function and the vacuum expectation value of the field squared for the geometry
of concentric spherical shells in a constant negative curvature space. The Dirichlet boundary
conditions on both shells are assumed. In the region between the shells the eigenfunctions
have the form (39) and the corresponding eigenfrequencies are related to the zeros of the
function X

l+1/2
iz (u1, u2) by formula (40). For the evaluation of the corresponding series in the

mode-sum (47) for the Wightman function we apply summation formula (15) with the function
h(z) given by (49). As a result this function is presented in the decomposed form (50), where
the first term on the right-hand side is the Wightman function for the region outside a single
spherical boundary and the second one is induced by the presence of the outer sphere. By
making use of the identity (53), we have presented the single shell Wightman function as a
sum of two terms, formula (55). The first one is the corresponding function in the constant
curvature space without boundaries and the second one is induced by the shell. For points
away from the shell the latter is finite in the coincidence limit and can be directly used for the
evaluation of the boundary-induced part in the vacuum expectation value of the field squared.
The renormalization is necessary for the boundary-free part only and this procedure is the
same as that in quantum field theory without boundaries. In the region between the spherical
shells the vacuum expectation value of the field squared is presented in the form (58), where
the first term on the right-hand side is the corresponding quantity outside a spherical boundary
and is given by the expression (59). We also investigate the behavior of the boundary-
induced part in the expectation value for the field squared in various asymptotic regions of the
parameters.
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Appendix. On the zeros of the function Xμ
iz(u, v)

In this appendix we show that the zeros z = zk are simple and real. First, we note that the
functions P

±μ

iz−1/2(u) satisfy the Legendre equation with ν = iz − 1/2 and, hence, the function
X

μ
iz(u, v) is a solution of the Legendre equation for the same value ν with respect to both

13
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arguments. As a result, by making use of the differential equation for the associated Legendre
functions it can be seen that the following integration formula takes place:∫ v

u

duX
μ

ν ′(u, v)Xμ
ν (u, v) = (1 − u2)

X
μ

ν ′(u, v)∂uX
μ
ν (u, v) − Xμ

ν (u, v)∂uX
μ

ν ′(u, v)

ν ′2 − ν2
. (A.1)

Taking the limit ν ′ → ν and applying l’Hôpital’s rule for the right-hand side, from this formula
we find∫ v

u

du
[
Xμ

iz(u, v)
]2 = −u2 − 1

2z

{[
∂zX

μ
iz(u, v)

]
∂uX

μ
iz(u, v) − Xμ

iz(u, v)∂z∂uX
μ
iz(u, v)

}
. (A.2)

By taking into account the relation X
μ
−iz(u, v) = X

μ
iz(u, v), we see that for real z one has

[Xμ
iz(u)]2 = |Xμ

iz(u)|2 and the integral on the left-hand side of (A.2) is positive. Now from
(A.2) it follows that [∂zX

μ
iz(u, v)]z=zk

�= 0, and hence, the zeros zk are simple.
Now let us show that all zeros of the function X

μ
iz(u, v) are real. Suppose that z = λ is a

zero of X
μ
iz(u, v) which is not real. As the function X

μ
iz(u, v) has no pure imaginary zeros, λ

is not a pure imaginary. If λ∗ is the complex conjugate to λ, then it is also a zero of X
μ
iz(u, v),

because X
μ
iλ∗(u, v) = [

X
μ
iλ(u, v)

]∗
. As a result, from formula (A.1) we find∫ v

u

dv X
μ
iλ∗(u, v)X

μ
iλ(u, v) = 0. (A.3)

We have obtained a contradiction, since the integrand on the left-hand side is positive. Hence,
the number λ cannot exist and the function X

μ
iz(u) has no zeros which are not real.
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